Reproduction Quality Notice

This document 1s part of the Air Technical Index
[ATI] collection. The ATI collection is over 50 years
old and was 1imaged from roll film. The collection has
deteriorated over time and is in poor condition. DTIC
has reproduced the best available copy utilizing the
most current imaging technology. ATI documents
that are partially legible have been included in the
DTIC collection due to their historical value.

If you are dissatistied with this document, please feel

free to contact our Directorate of User Services at
[703] 767-9066/9068 or DSN 427-9066/9068.

Do Not Return This Document
To DTIC



Reproduced by |
AIR DOCUMENTS DIVISION

HEADQUARTERS AIR MATERIEL COMMAND
WRIGHT FIELD, DAYTON, OHIO




]

B/
US.GOVERNMENT

IS ABSOLVED

[}
. &

/

FROM ANY LITIGATION WHICH MAY
ENSUE FROM THE CONTRACTORS IN -
FRINGING ON THE FOREIGN PATENT

RIGHTS WHICH MAY BE INVOLVED.

WRIGHT FIELD, DAYTON, OHIO







D32,332/
3?'20 )

NATIONAL ADVISORY COMMITTEE FOR AERO

WARTIME REPORT

ORIGINALLY ISSUED

February 1943 as
Advance Restricted Report

WIND-TUNNEL INVESTIGATION OF THE CHARACTERISTICS OF

BLUNT-NOSE AILERONS ON A TAPERED WING

By Paul E. Purser and Thomas A. Toll

¥l

Langley Memoriel Aeronautical Laboratory
Langley Field, Ve.

RETURN T0 " " Uh

Spacial Documents Braich ~ TSRWF-§ ")f?l 1047 ¥
Wazht ticld reterence Library Section <\
Air ocum 7its Divi_ion - |ntelhigence (T--2)

NACA

WASHINGTON

o Yy
t”‘
308 Y

LHOUM.
SLINGWN

G AL
(RS
| 2-1 ‘NOISING

‘oN WILA0NOM

2 /¢

HE

l

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of
advance research results to an authorized group requiring them for the war etfort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without ¢

n order to expedite general distribution.

L - 262




HATIONAL ADVISORY COMMITTEE FOR AEBRONAUTICS
ADVANCE RESTRICTED REPORT

VIND-TUNNEL INVESTIGATION OF THE CHARACTERISTIOS OF
BLUNT-NOSE AILERONS ON A TAPERED VING

By Paul %, Purser and Thomas A. Toll
SUHUMARY

: An investigation has been made in the LMAL 7- by
10~foot tunnel of various modificatione of a 0.155-chord

- blunt—~noee aileron on a semispan model of the tapered
wing of a fighter airplane, The nodifications considered
included various amounts of overhanging noee balance with
various nose radii, The effecte of the vertical location
of the ailleron hinge axis were determined for one balance
size and the effects of the gap at the azileron nose were
determined for all the modifications, Peak pressures were
determined over the noee portione of some of the ailerons,

The stick forcea and the rates of roll were estimated
for a filghter pirplane with plain sealed ailerons and with
some of the blunt-noee allerons.

The results of the testa and computatione indicated
that, fer the arrangement tested, the use of blunt—nose
allerone with 40-percent balance would reduce the high—
speed etick forcos to a very small value., The adverse
-effects of a gap at the aileron nose tended to decrease
the chord of the balance was increazsed. The effects of
the vertical location of the hinge for the aileron with
40—-percent balance were small. The effects of increasing
the nose radii on the blunt—nose ailerons was, in general,
to increnso the negative slope of the curves of hinge-
moment plotted against aileron deflaction, to decrease the
rolling—moment coofficilents at emall zileron deflecticne,
to increasc the rolling—monent coefficients at large ail-
leron deflections, to incrcase the effective deflection
rango of the aileron, and to decrease the magnitude of
the peak pressures over the aileron nose,

The mugnitudes of the peak pressures indicates that
severe compreesibility effects would probably be encoun~
tered if the ailerons wore deflected *15° while the alr—
plane was flying at a moderately high speed. Accordingly,




1t appears that blunt—nose ajlerons should be teeted at
Mach npumbore considerably hisher than the Mach nunber of
the tést dnta herein prosonted before being consiféred
for use on high—speed ajrplanes,

INTRODUOT IONW

Because of the inoreased importance of obtaining
adequate lateral control with reasonable stick forces
for high—speed airplanes under all flight conditions,
the IAO& ‘has engaged in nn extensive progran of latoral-—
control rosesrch, The purpoees of thie prorrnn are tc
determino the cHarnctoristics of existins latoresl—control
devides, to dotcxm*no the charas cteriqtic"_cf modifica—
‘tions to. ex 1ating devices, and to dovelopy new Gevices
. that show promise of being- moro satiefactory than those

‘f;now ih uso.

.. IhvestigwtiOns 1n two—dimensionnl flow (reference 1
‘t0'4) have indicatoed that use of nose ovorkang (or bol—-
anco) offors a yowerful means of adjusting control-—
aurfnce hinge moments,’ The present tests wero mado to
determine tho charactcri tics of C,155—chord ailorone
with blunt-nose balunctes aon a tapercd wing model, 'The

Jinveakigation, includod determination of the effocts of
balunce thord’, balante nose radii, nosc zaps and soals,

.and vertical location of the aileron hingo axis on the
characteristice of blunt—-nose aillerons., The dynanmic
pressuresexisting over the nose portions of some of the
allerons at variocus deflections and ¢ngleo of attack were
also determinod

APRARATUS AND LETHODS

E?eat'lnstallation

. \ oenispan Todel of a tapoered ‘wing Wag euspended in
- $K&IMAL 7~ By 10-fdot ‘tunnel (reference 5) as shown
achematically in figure 1. The root chord of the model

.was adjacent to one of the vortical walls of the tunnel,

‘which’ thereby gorved as a rqflectibn plano. ‘The flow

..~ Over o somispan wing in this satup is esuentially the
'_;eamo as it would bo aver hnlf a complete aymmetrically




‘loaded wing in a 7~ by 20-foot tunnel, XNo part of the
model wae fastened to or in contact with the tunnel wall
and a small amount of clearance was maintained between
the root chord of the model and the tunnel wall, The
model was suspended from the balance frame, ae shown in
figure 1, in such n way that all the forces and moments
aeting on it could be determined, Provislon was made
for changins the anpgle of attack while the tunnel was in
operation,

The alleron deflections and hinge momente were do—
termined by means of a calibrated torque rod and linkage
system developed cepeclally for this type of setup (fig. 2).
The alleron was deflected by turning the hinge—moment dial
which, through the torque rod, drove the aileron—deflection
drive tube and tho link to the aileron horn. When the de-
sired alleron deflection had bheen attained, the torque rod
was clamped in position in order that all wirg forces and
- moments could bo determined without any interference from
the operator of the hinge-moment unit. The alleron deflec-
tion wns determined by the reading of the alleron-deflec—
tion dial with respeet to the pointer attached to the
angle—of—attnck drive tube, The nlleron hinge moments were
determined from the twist of the torque rod as indicated
by the reading of the hinge—-moment dial with respect to
‘the pointor mentioned, The torque rod was calibrated
after it was inetalled in the test setup.

Pressuroc over the nose portions of some of the ai-
lerons were measured by means of static—pressure tubes
located at several chordwise positions for each of two

"epanwise locatlons (section 4 and eection B of fig. 3).
The tubes were about 0.020—inch outside diameter and were
held in position with the tube center line at a distance
of about 0.09 inch from the surface of the aileron. The
total pressure of the air stream was measured by a total-
pressure tudbe placed ndbout a foot below the model and
about 4 inokes ahead of the model eupport—strut fairing.

Hodels

.The taperoed—wing model ueod in these teste was built
to the plan form ehown in figure 3 and repreeents the
sross—hatched nortion of the nirplane in figure 4. The
basio airfoll sections were of the NACA 230 eeries tapered
in thickness from approximately 15§ percent at the root
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to 8} percent-.at the tip. The basic.chord ¢, of the

wing model was. incressed 0,3 inch to reduce the trailing—
edge thickness and the last few stations were refaired to
give a omooth contour. Ordinantes for the extended and
refairet sections are given in table I.

The slotted flap was duilt to the ordinates given
tadle II and bad a chord of about 10,7 percsant of the
wing chord, The flap ordinates are given for the root
and tip coctions although only the portion of the flap
tonding from tho root station to the 52,3~inch stution
used for these tests. The slot shapos and flap pivot

_points sre nlso zivon in tadle II,

Ian figure 5 the details are zivon for the various
0.165¢ by 0.,105b/2 .milerons, whore ¢ is the wing cherd
at any cpanwise station and b iz twice the span of tho
semispar model, BReitovable alleron—nose bleclks and wing—
tail blocks werce provided in order that ths asileron bal-
...ance, gap, and hinge-uxis location could be varied. One

.ngse blocic wvos built for each mmount of balarce. The nose
radii were vrried by reshaping the rnose bloclks after the
.tests of a gziven eet ef nose rTnzdii had been cempleted,
Provision was made for minimum, 30-perceat, and 4U—percent
balances, :

Orly one lLinge—axis location and nose shape was tested
for the minimum—-balance (plain) aileron, The hinge nxis
was located on the ailerou mean line, and the nileroun nose
at any spanwise astation was a circular arc tanzent to tho
upper rnd lower surfaces of the ailoron with its center at
the hinge axis, The 3C-percont—bulanco nose block was do—
Blgned in such a manner thut tho nileron mean line unported
above the nirfoil surfuace at all points along the aileron
span for very nearly the saire anileron deflection. Tho wing
medel tapors in percent thickieen and therefore it was
necessary to vary the percent balance anlony; the aileron |
span in order to meet the condition Just stnted. For the
aileron witl: 30-percent balance the balanco chcrd at any
8panwiss station was Tixed by tho condition that hLas been
specifiod 2nd by the additiennl condition thnt the balance
root—uean—square hord Tp mnust equal 30 percent of the

aileron ront—uean-square chord Ty, The aileror with 30-
percent balance will be called the 0.30¢,~balance aileron.

The aileron with 40-percent balance wn3s designed in a
similar anner and will be called the 0.40¥,—balance nileron.




Tho three nose radii tested onm the 0,30T,— =#nd the
0.40T,~balance ailorons were selectod in the following

manner: When the centor of curvature was locatod on the
ailoron moan line, the redii that would describe centiau-
ous circular arcs tangent to the upper and lower surfacos
of the ailoron were designated medium radii, Small radii
‘'were talen az one—half tho mediun rndii and large radii
were talien ns one and one—half tinos the medium radii,

'Provision wns made for two hinge—nxie locations and
-two gaps for the 0.40C,—~balince alleron, A separate wing-

tail block wi:s constructod for each gap and for each noei-
tion of the hinge axis, Tho two nositions of the hinge
axie were at tho mean line and at a location 80 percent

of the ailleron somithickness t Tbelow the meazn line.

Tost Gonditioné

All tho.tests were uwnde nt au dynuamic preesure of
9.21 pounds per squnre foot, which corresponds to a
velocity of about GU milee mer hour and to a teet Reynolds
number” of about 1,540,000 baued on a mean cerodynamic
chord of 3,66 inches of the odol wings., The effectivo
Reynolde namber of tho tostu wan cdbout 2,450,000 bosed on
.a turbulenco factor of 1,6 for the LHAL 77— by 10-foot
tunnol, Thec proesent tcots wero madec at low seanlo, low
veloelty, and 21;h turbulonco relativo to the flight coa—
ditione to wkich thu resulta nro nppliod, Tho offccte of
these variablos wore not determined or estimated. )

RESULTS A¥D DISCUSSION
Coefficients and Corractions

The symbols used in the presontation of the results
are :

Cy, 1ift coefficient (L/qos)

Cp uncorrected drag coefficiont (D/qos)

Cn pitching-noment coefficieat (/g Sct)

cy! rolling—nonent coefficieat (L'/qOSb)




uncorrected model rolling-moment ceofficient
(L',/q,5%)

" yawing—mnoment coefficlent (M!/fq,5b)

eileron hingo-uoment cosfficient (H/qyba%a®)

Cn of up aileron minﬁs Cnp of down aileron

. actual wing.chofd at any eranwise location

choré ot-bééié alrfoil soction at any spanvise
location ) : -

mean agerodynaaic chord

alleron chord ueseured along airfoil chord linc
from hingu axis of alloron to tralling edge
of alrfoll

- root-mean—aguarc cihord of cileron

aileron dalance ciiord moasurcd aleng airfoil
chord linc frou dbalancc nosu to aileronm ' .
Singe axie . R :

root-mean—square chord of aileron ‘balance

a;le;@n—balance.rhtio

twice svan of cemispan model

aileron .span

tvice arer of gemisra§:m9del
sealthickness of sileron nt hinge axis
tvice 1ift on aseniennn nodel )
twice drap oi remispan uocdel

twilce Hitching moment of semienan model about
suyport axle




rolling moment, due to alleron deflection, about
wind axis in plane of symmetry

uncorrected rolling moment, due to aileron deflec—
tion, about wind axis in nlane of symmetry

Yawing moment, due to alleron daflactlon, about
wind axis in plane of symmetry

alleron hinge moment
local dynamic pressure %pv /

dynemio pressure of alr stream, uncorreoted for

blooking épv°a>

maxinmum local dynamlic pressure

local velocity

froe—streanm veloolty
indigatcd velocity

angle of attack

aileron deflection relative to wing, positive when
tralling odge 18 down

slotted flap deflection relntive to wing, positive
when tralling ecdge 1s down

oontrol—sticl deflection

rote of change of rolling-moment coeffiolent
C3;! with helix engle »b/2V

rate ol roll

stiok force

A positive value of L' or C;' corresponds to an
increase in 1ift of the model and a positive value of N!?




or On! corresponds to & decreass in drag of the model.

Pwice the actual 1ift, drag, pltohing moment, area, and
epan of the model were used in the reduction of the re—
sulte becauso the model represented half a complete wing.

The sngle of attack, the drap coefficlent, the
rolling-moment coefficilent, and the yawing—moment coef-
fleclent have veen corrected for the eifsect of the tunnel
walls in accordance wlth tho theory of tralling—vortex
images. The corroctions applied to the rolling— and
Yaving-noment coerficlente account for the fact that the
sranwliee loadling irdv.ced by alleron deflectior on a seml-
8par wing vith a rcefloetion plane at tiie plano of eymmetry
1s sonewi.at 4iffarent irom the loadinz that would be in—
duced over a comdlete wing . with no reflection plane. This
statement 1s madio In an cttourt %o clarify etatements 1in
provions renorsn as to tho correc’'lons applicd to lateral—
control datn Tren teosts of the tapered—wing modol used
and should uwot bo couaatrued to uzexn that the corrcctlons
appllod to tho dutu nmrescented Leroln differ from thoee
aprlied in arevious lassroal-ceontrol tests of C,155¢ by
0,42G5%/2 allero-s un this wing model. o corrections have
been an.lled to ti.e 14ft, tie nliching-uioment, and the
hinge—noment coefricionte, ot cenputaticns indicate that
these corrections vwoulLd be vory small. Xo corrections have
boen apnlled to arny ox the rezults for bloziing, for als—
alinenent oy the nir strean, for the effocis of tlhe support
strut, cr for the treniment of tlie inboard end of the wing,
that 1s, tio raanll gu» tebtweorn tiio root sectlon »f the wing
and the wall, t:3 lialuge thrzough the wail arcund the sup—
port tube, ard %tire Toania~ry lover at tiie wald, ZIThese af—
facts cre Hrobedl;s ¢f ancord—urder inporteice for the
crplling— and yawinp-nouent cocfrisienta (wiich arc baei—
cally ineromontal ¢ota) Lut nay b mere impbotant for the
~otker Torcon and mtm:n;s,_purticulnrlb for the drag coef—
defenis, It 1g fcr this einon that the drag coefficlents
are referrel to as uncorrected,

"hic correctlons thet vere annlied (by afdition) to
the aaile of attack (ia dez), theo drag coefficlent, the
rolllias-mouent coefflicient, and tlhe yawing—nmoment coeffil-
clent vere

4m = 1,30 O,

ACp = 0.023 0p,°




40;' = -0.15 ',

aCy' = -0.03 Op, C3'

. Characteristics with Allerons Neutral

4 comparison of the lift, drag, and pitchang-moment
characterieticy of the tapered-wing model equipped with
plain ailerons and blunt~nose balance ailerons fixed at
neutral is shown in figure 6. In order to make the com—
parieson for the case in wviiieh the greatest possible
feviation nizht be expected to occur, the 0.i0E,~balance

blunt~nose agileron with large nose radii was selected.
It is seen from this figure that these charaecteristics
agree reasonably well for the varioue aileron installa-
tione; for this roason, it wae not considered necessary
to presont data of this type for each of the modifica—
tions tested in this investigation, ‘ '

Plain diileron

The characteristics of the plain aileron, shown in
figure 7, are presented primarily to provide a base with
which the blunt—-nose-balance ailerons nmight be compared.
The most significant points to be noted from figure 7 are
the high negative slopoe of the hinge—moment curves
30, /38, for both sealod and unsealed ailerons and the

marked loss in rolling-moment coefficient caused by an open
gap at the aileron nose,

Effeet of Type of Seal

Although the grease seal esemed to be satisfactory
during the tests of the plain aileron, great difficulty
wao experienced in measuring the hinge noments of the
balanced ailerons when this type of Beal was used. It wvas
found duringz the course of the investigation tlhat consist—
ent -results could be obtained more emsily by replaoing the
groase seal with a thin strip of rubber dam, cemented at
the mean line to the nose of the aileron balanco and to
the wing tail block. The longitudinal gaps, 0.002¢ wide,
between the wing and the ends of tho balance were left
open for all tests. The tests that had already been made
with the grense seal were not repeated with the rubber
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esal, with the exception of a single test of a 0,405y~
balance alleron with medium nose radii at an angle of
attack of 13.3°, A comparison of the characteristics of
the alleron with the two tyses of seal is presented in
figure 8. The principal differences to be noted are that
the negative slope of the hinge—nmoment curve is smaller
end the effectiveness at pocitive alleron deflections is
elightly larger for the grease seal. These Cifferencss
are provavly caused by the fact that the grease, in addi-
tion to sealing the gap, filled the space between the
wing and the alleron nose, which may have prevented lat—
eral flow along the leading ecge of the aileron, and also
gave a less adbrupt change in contour at that point. The
less abrupt change in contour should cause a smoother .
flow over tl:e alleron nose and theredy cause both the al-
leron ané tihe balance to be uore effective. The increase
in. balaﬁce efrfectiveness is esyecially noticeable at large
nezative aileron deflections; at 34 = -20° the hinge—

moment cosfficients for the two tynes of seal are approxi-
mnately egual dut oprosite in sign, with the grease—seal
results indicating the larger bdalance effectiveness.

0.30€a~3alance Allerons

The characteristics of sonme of the modifications of
- the 0.30%y—~balunce allsron are given in figures 9 to 1l.
The characteristics of sone additional nodifications are
. presented in Tigures 12 to 14, whicL show the effect of
nose radius,

At an angle of attaclz of 1.56° the presence of the
seal on the alleron witli saall nose radii descrezcel ths
negative cslone of the hinge—nozmsnt curve d0n/d5, at

snall deflections dy adbout 0.001 and increased the effec—
tiveness for &g = +15°% by absut 14 percent. (See fig.9.)

At an angls of attack of 14.8°, however, the seal had
little effsct or the slope of the hinge-nonent curve at
small deflsctions and tli1e unsealel aileron was slightly
more effective than the sealed aileron.

Heither nose radius nor gap had nuch effect on the
variation of tlie hings—nonent coefrficient with angle of
attaclk, (See fig. 12.) TFor all the nodifications
30y /%0 .is very nearly zero within the range of « = —4° to

a = 4° dut assumes a gradually increasing negative value
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as the angle of attack is increaeed adove 4°. The value
of 80p/3a at o = 16° is about -0.005.

The nogafive slope of the hinéu—moment curve 3C,/38,

increasee as the nose radil are increased (figs. 13 and 14)
Zor both open and sealed gaps. Increasing the nose radii
decreased the alleron effectiveness at small aileron de—
flections for the open gap but the effect was negligidle
for the sealrd gnp. The ailerons with the large nose radii
maintaln tlhci» e’fectiveness over a greater deflection
range and therefure are usually the most effective and

have the lowoust hinge moments for values of &5 greater

than 15° or 20°,

0.40%,~Balance Allerons with Nean Hinge Axes

The characterlistice of some of the 0.40T,~balance

allerons having the hinge axis on the mean line are pre—
santed in figures 15 to 17. The characteristics of some
additional modifications are presented in figures 18 to
20, vhich show the effect of nose radius,

As in the case of the 0,30F,-balance allerons, the

variation of the hinge—moment coefficlent with angle of
attack does not seem to be apprecladly affected by the
nose radlius {(fig. 18). ¥ith a gap of 0.005¢, however,
3Cp/3a 1s slightly positive for angles of attack lese

than 2°%; vhereas, with the gap sealed, 3C0p/da 1s adout
sero over the same range. At o = 16°, 30h/3a 18 about
-0,004 for all modifications. '

The tendency of the larzer nose radii to cause higher
negative slopes cf the hinge-mcment curves at 6, = 0°

is also apparent for the 0.40C,~balance allerons, and

again the effect of increasing the nose radll was to de—

- erease the rolling—moment coeffciruss at Bmall deflec—
tions when the ge) was opsa. V.*s oiall nose radll and
0,005¢ gap, the atleson wes overtalansed at an angle of
atteck of 0,19, {&:. fig. 3%%a,.) A* alleron csflectioms
of =15° ant 82 bot: {6 dDipge—monsat—coefficicn=s and - .
rolling-ncurnt—credTicient curves vreeck away quite rapid-—
ly when the sunall radll are used, and high hinge momente
and low effectiveness can be expected beyond these limits,




Bffect of gap.— The 0,408,-balance aileron having
medium nose radii was tested with o gap of 0.0026¢ as
well as the usual 0,C06c¢ und sealed gape. Figure 21
shows that the characteristicrs of the aileron with the
intermediate gap are not uvnusual and lie about halfway
between the characteristics with 0,005¢ gup and those
with sealed gap.

The principal effacts of gap on hinge— and rolling—
monent puraneters for the 0.40T,—bulance aileron with

" medium nose rndii nay be judzed fron figure 21 =nd from
the following table:

aCp

— t
TN for |LC;' for
Gap

6g = £156°

Sealed |3 -0.0017 | ©.0428
.0026¢ | »C.1 | -.0012 .0407
roose | [ ~.0008 .0392

«00856¢
.006¢c

-.0034 . 0404
~,0083 | . 0409

Seanled -~0.0047 , 0.0406
13.3
4

Dbub11n~ the vidth of the gap very nearly doubles 1ts ef~
fect on the slope of the hinge—noment curve at either
angle of attaeck. The increment of rolling-momont coef—
ficient produced by aileron deflections nf +15% is quite
noticeably decrcascd with inercacing gap at tho low zngle
ot attacz but shows practically no chango at the high

3lo of attack, At the low angrle of attack the effect
of tke zar in decreasing the rolling—moment coccffioient
anpoers to be ulmoet entirely on the up ailesron; at the
high onzle of attacii, howevor, the roducticn in effoc—
tivcncas on the up aileron is countorzeted by a corre—
eponding increase in effectiveness on the down aileron.

0.40Cg-Balance Allercn with Low Hinge Axes.

The charactoristics of two 0.406,~balance ‘milerone
having low hinge axes are shown in figuros 22 and 23.
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The charaoteristies of some additional modifications are
inoluded in figures 24 to 29, which ehow the effoct of
.hinge~axis location,

The hinge—axis looation had very little effoct on
the variation of hinge~moment coefficient with angle of
attaok when the flap wae retracted (fig. 24) but, with
the flap deflected 50° (fig, 25), the ailerons with low
hinge gxes thowed a greater tendency toward positive

e values of JCnp/da for angles of attack below 3°, In

general, it can be eaid that the change in vertical posi-
tion of the hinge axis had 1little effect on any of the
characteristics. For most of thoe nose modifications the
‘ailerons with low hin.g;e axes sesmod to retain their ef-
fectiveness to slightly highor positive deflections and
to lose thoir effectiveness at slightly lowor negative
deflections. Tnere was & correspording shift in the
values of 5§, at vhich the breaks in the hinge-moment

curves occurred. At high anglee of attack the ailleron
with a gep of 0,006¢c, medium nose radii, and low hinge
axis (figs, 26 and 27) guve considerabdly higher effec—
tivenens for negntive deflections and only slightly less
effectivcnese for positive deflections than thc same ai-
‘leron with a mean hinge axis, but this tondency wae not
.evident for the ailerons with sealed or 0,000c gap and

with large nose radii. (Sec figs. 28 and 29.)

Effect of Balance Chord

The effect of the balance chord Jp on the charaoc—

"ufefieticd of the blunt—noce ailerons with mediun nose

radli and mean hinge axes are chown in figure 30. Some

of the more important effecte of balnnce are summarized
for severul of the nilerons in figurc 31. Increasing the
balance chord was moro effective in decreasing the slope
of the hinge-moment curve for a~ilerous with 0,C05¢ gape
than for allerons with senled gaps. The increment of
rolling—-noment coefficient produced by alleron deflectione
of #15° was increased as the balance chord wae increased
for both mediuw and lare nose radii and 0,0050 and sealed
gaps. The effectiveness of the anilerons with 0,005¢c gaps
inerensed more rapidly with balance chord than did the
effectivenenss of the ailerons with senled gaps. .




Peak Preseures

Local dynamic pressurss wore detormined at various
positions over the noses of some of the allerons, and the
resulte are »reeentod in figures 32 to 35 in terme of the
ratio of the looal dynamic preseure to the free—streanm -
dynamie pressure. In each cane an atteant was made to
select poeitione as rexr 8 wossible to the point at which
the penk presuure could be expocted to ocecur, The peak
proesure, for o givon spanwise position on a given aileron
seemed to depend principally on the nileron deflection,
being nractically independent of angle of attack until the
occurrence.of local stulling over the aileron nose. The
peal presgures nt the inbourd and outboard sections were
verJ nearly the same for a given aileron deflection ex—
cept during a condition of partial aileron—nosze stall, as
id- figures 33(c) and 33(d).,  The pressures on the lower
surface of each of the mnilerone were generally somewhat
lower then tlle pressures on the upper surface. Sealing
the gap neoumed to have little offect on the peak pressure
on oither zurface,

The ratio of the peak dynaric presnure to the free-—
ntream'dynamic prescure qmaxlqo is plotted against

aileron deflection for the threo nose—radiue nodificatione
in figuro 36, At anileron deflections of 15° the ratio
Qnax/9o &t the inboard section ranges from 2,65 for the

large nose radii to 3,02 for the small nose radil; these
values correspond, respectivel;, to local velocities of
1.63 and 1.74 times thoe volocity of the free stream. The
peak presnures ovor the nose of the sileron with medium
nose radii are only slightly Lhigher than the pealk pree—
aures ovor the ailoron with large noso radiil,

. Becouse the peak pressures were relatively high. tor
all the mcdifications tested, it is probable that the ef~
fectc of compreesibility will be severe at high speeds,
It is rocemmended tihat blunt—noce ailerons be tested at
tinch nuabers considoerably higher than the liach number of
the teat dnta horein presonted before they are considered
tor use on high—speed airplanes.

Eétimatod Ratez of Roll and Stick Forces

| The:rntes of roll and the stick forcée during steady
rolling of.the airplane, shown im figure 4, have been
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estimated from the data of figuree 7, 10, 11, 18, 17, 22.
and 23. The rates of roll were estimated by means of the.
relationship :

s
.
“a

whore the coefficient ‘of damping in roll’ c, was ﬁakeh'

as 0,46 from the data of reference 6. It has been aesumed
that the rudder will be used to oounteract the yawing
mouest, that the alleron—operating mechanism is nonelas—.
tio, aad that the wing will not twlet. The stick forges
were estimated from the relationship

S 90,3 dss . - .
Fg TE;— aCy TP : . (8)

which may Ve dehiied from ihe aileron &imensidnérand the
following airplane characteristice: .

260
. 38
1.6
seriee
. 84,14
. 7063
. 27.2.
. 2
. £2]

Wing aren, square foet . . .
Span, foot . . . « ¢+ 4« W ¢ W
Taper ratio . « .o
Airfoil seection (bdﬂlc) .
Menn serodynamic chord, inche
Weight, nounds . . . . « + . . .
Wing loading, pounds per square foot
Stiek length, feet « .« . . . 4 ¢ . .
Haximun stick deflecetion, 85, degree

NAC

c s s s e Pme s e

e o e« o v Ple o o
@
o

.
.
)
.
.
0
.
=3

The value of the constant in equation (2) ie dependent
upon the wing iocading, the size of the aileérons, and the
length of the stick. Tae vdlues of d§,/28g in equation
(2) zey be doterniacd from the maximum stick defleotion
of #£21° and fircm the mazinum alleron deslcctlions noted on
the fisures showinsz the zomputed results} for a given ai-
leron d§,/d8g; 1z assumed constant. Tho valies of Cj!
and ACy wused in equations (1) and (2) are the values
computed for the condition of steady roli; ' tho difference -
in arnls of attack ot %6 two ailerons due to ruvlling has
beon taren intuv account. A4ll the ailerons wero assumed
to deflect equally up and down with maximum deflections
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sufficisnt to produce pb/2V = 0,09 at high speed, whioh
- would allow for a 20-percent loss due to oable stretoh
and wing twiet for the nonrigid airplane and etill pro-—
vide 3b/2V = 0,07 (the minimum requirement stated in
referenco 6).

Sticlk—force characteristics of the 0,30C,—balance

aileron with 0,005¢ gap and medium and large nose radil
are presonted in figure 37. Stick-forcs charaecteristics
for the 0.40T,~balance alleron with 0.005¢ gap and mediunm

and large noee radii ars presented in figure 38 for the
mean hinge—axis looation and in figure 32 for the low

hinge—axis looation, No computations were made for the
ailerones with small nose radii because ths alleron noee
was nearly stalled at ths deflections required for the

emall ailleron used in these teets. For all casss shown
in flgures 37 to 39 increasing the noss radii increased
ths sticl forces and the aileron deflection required to
“attain a given pb/2V. In general deflscting the flap

increased the ailsron effectivenesa. 1ith the 0,40Tg—

balance aileron, lowering the hinge axls decreased the
high—~speed stick forces for the msdium nose radll and in-
ereasod the high—speed stick forces for the large noss
radil,

A.comparison of ths stick-forbe characteristics of .
the plain sealed ailsron und the thrée bnlanced ailerons
with 0,006¢ gaps and medium nose radiil is given in figure
40, As shown by .the curves of figurs 40, the uss of
0.,408,—balance blunt—nose ailerons will reduce the maximum

- high—specd stiok forcss to about 15 percent of those ex—
perienced in'the use of plain sealed allerons, There was
no indication that the use 0f blunt—nosse silsrons would
cause overbalance at low spesds. Ths small reduction in
etick force produced by the 0.303a balance as comparsd
with the reduction oaused by the 0.40T, balance may be

attributed to the larger rate of change of 3CL/36, with

balance chord for the larger balance and azlso to the faot
that the 0.30Ty~balance aileron with 0.005¢ gap was less

" effective than both the plain sealed ailsron and the
0.40C,~balance aileron with 0.005¢c gap. Had all thres

. allerons been sealed, the difference in boslanos effec—
tiveness would have besn smaller.

.




" a££ect1veness.

CONOLUB IONS

) From the results of the tests and computations here—
- 'in reported, in whioh the effects of oompressibility,

- turbulence, and soale have been ,negleoted, the following
conclusions may be drawn:d o

l., For the arrangement tested, the use of blunt-nose
allerons with 40-percent balance and medium noee radii
would reduce the high—speed stick forces to about 15 per—
oent of those experienced in the use of plain sealed
ailerons.

. 2, Increasing the balance chor& inereased the ai=
... leron effect'ivenese slightly and reduced the adverse ef-—
B !eotn of a gap at the aileron nose.

3. Increasing the nose rndii decreased the alleron
offectivenese for small deflections but increased the
eoffectiveness at large deflections and:-extended the de—
fleotion range’ over which the ailerons maintained their

4, Increasing the nose radii increased the negative
slope of the curves of hinge—moment coefficiont plotted
against aileron deflection but, at the same time, extended
the deflectlon rango over which the slope wae relatively
lm!ll .

. b, Ghang!ng the poeition of tke hinge axis from the
aileron mean line to a position near the lower surface of
_the aileron had comparatiyely little effect on the ai-—-
'laron characteristics.

. 6. The peak preseuree over the moses of tho blunt—
noge ailerons wore relatively high at moderate deflections.

Langley liemorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fileld, Va.
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TABLE I
ORDINATES FOR AIRFOIL

Epanwise stations in iIinches from root section. Chord
stations and ordinates in percent of basic wing chord c;]

c1 ?
S in. ey r

Ll
Lanl

Model wing station O - Model wing station 88.8

Upper Lower Upper Lower
Station | syprface | surface Station |} surfacd surface

0 0 0 o]
3.48 -1.60 1.89 -.8¢
4.61 -2.36 2.65 -1.07
6.10 =3.21 3.70 ~1.26
7.14 -3.82 4.45 -1.40
7.89 -4.33 4.98 -1.52
8,80 -5.12 5.54 -1.86
9.22 -5.71 5.73 -2.22
9.40 -6.10 5.77 -2.46
9.37 -6.28 5.71 -2.62
8.90 -6.,23° 5.56 -2.70
8.02 -5.78 4.78 -2.56
6.85 -5.05 4.06 -2.27
5.44 -4,10 3.21 -1.87
3.87 -2,97 2.26 -1.36
2.12 -1.87 1,22 -.78
1.16 ~-.94 .70 ~.46
.18 -.16 .18 -.14
100,73 .03 -.03 101.2 .05 - =.05

L.E, radius: 2.65. Slope L.B. radius: 0.70. Slope
of radius through end of of radius through end of
chord: 0.305 chord: 0.305




TABLE II
ORDINATES FOR FLAP AND SLOT SHAPES

Spanwise stations in inches from root section,
hord stations ang ordinates in percent of vesic
wing chord e1]

Flap Stati
¥o§e% w%nE sfaf!on g el w station o |
ation pper Lowep on ﬁpper Lower
surface surface surface surface

o] ~1.29 -1.29 o] -0.76 ~-0.76

« 52 -.08 -2.30 53 .01 -1.16

1.04 .48 ~2.50 1.06 « 36 ~1,23
2.07 1.29 -2.60 2.12 .80 ~1.22
4.15 2.17 -2.44 4.24 1.30 ~1.10
6.22 2.53 -2.18 6.36 1.42 ~.99

) 8.29 2.40 -1.91 8.48 1.35 -.87
- 12.44 1.865 -1.32 12.72 <93 -.62
16.58 «85 -~.69 16.96 .51 ~e32
20.72 .03 ~.03 2l.20 .05 -.056

L.E., radius: L.E. radius: 0.32

Slot Sha Plap Pivot Point
ation ta station O Station

5.3 £5.8 84
2 7.7 8
86

2.5




Fige. 1,2
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Figure $.-Portion of airplene simvigted by modet
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